Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Brain Commun ; 6(1): fcae008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304004

RESUMEN

The 18 kDa translocator protein is a well-known biomarker of neuroinflammation, but also plays a role in homeostasis. PET with 18 kDa translocator protein radiotracers [11C]PBR28 in humans and [18F]GE180 in mice has demonstrated sex-dependent uptake patterns in the healthy brain, suggesting sex-dependent 18 kDa translocator protein expression, although humans and mice had differing results. This study aimed to assess whether the 18 kDa translocator protein PET radiotracer [18F]LW223 exhibited sexually dimorphic uptake in healthy murine brain and peripheral organs. Male and female C57Bl6/J mice (13.6 ± 5.4 weeks, 26.8 ± 5.4 g, mean ± SD) underwent 2 h PET scanning post-administration of [18F]LW223 (6.7 ± 3.6 MBq). Volume of interest and parametric analyses were performed using standard uptake values (90-120 min). Statistical differences were assessed by unpaired t-test or two-way ANOVA with Sidak's test (alpha = 0.05). The uptake of [18F]LW223 was significantly higher across multiple regions of the male mouse brain, with the most pronounced difference detected in hypothalamus (P < 0.0001). Males also exhibited significantly higher [18F]LW223 uptake in the heart when compared to females (P = 0.0107). Data support previous findings on sexually dimorphic 18 kDa translocator protein radiotracer uptake patterns in mice and highlight the need to conduct sex-controlled comparisons in 18 kDa translocator protein PET imaging studies.

2.
J Cereb Blood Flow Metab ; 44(3): 397-406, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37795635

RESUMEN

Neuroinflammation is associated with a number of brain diseases, making it a common feature of cerebral pathology. Among the best-known biomarkers for neuroinflammation in Positron Emission Tomography (PET) research is the 18 kDa translocator protein (TSPO). This study aims to investigate the binding kinetics of a novel TSPO PET radiotracer, [18F]LW223, in mice and specifically assess its volume of non-displaceable binding (VND) in brain as well as investigate the use of simplified analysis approaches for quantification of [18F]LW223 PET data. Adult male mice were injected with [18F]LW223 and varying concentrations of LW223 (0.003-0.55 mg/kg) to estimate VND of [18F]LW223. Dynamic PET imaging with arterial input function studies and radiometabolite studies were conducted. Simplified quantification methods, standard uptake values (SUV) and apparent volume of distribution (VTapp), were investigated. [18F]LW223 had low VND in the brain (<10% of total binding) and low radiometabolism (∼15-20%). The 2-tissue compartment model provided the best fit for [18F]LW223 PET data, although its correlation with SUV90-120min or VTapp allowed for [18F]LW223 brain PET data quantification in healthy animals while using simpler experimental and analytical approaches. [18F]LW223 has the required properties to become a successful TSPO PET radiotracer.


Asunto(s)
Enfermedades Neuroinflamatorias , Receptores de GABA , Masculino , Ratones , Animales , Receptores de GABA/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Proteínas Portadoras/metabolismo
3.
Front Neurosci ; 17: 1095761, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37292159

RESUMEN

Parkinson's disease (PD) is a neurodegenerative condition with several major hallmarks, including loss of substantia nigra neurons, reduction in striatal dopaminergic function, and formation of α-synuclein-rich Lewy bodies. Mutations in SNCA, encoding for α-synuclein, are a known cause of familial PD, and the G51D mutation causes a particularly aggressive form of the condition. CRISPR/Cas9 technology was used to introduce the G51D mutation into the endogenous rat SNCA gene. SNCAG51D/+ and SNCAG51D/G51D rats were born in Mendelian ratios and did not exhibit any severe behavourial defects. L-3,4-dihydroxy-6-18F-fluorophenylalanine (18F-DOPA) positron emission tomography (PET) imaging was used to investigate this novel rat model. Wild-type (WT), SNCAG51D/+ and SNCAG51D/G51D rats were characterized over the course of ageing (5, 11, and 16 months old) using 18F-DOPA PET imaging and kinetic modelling. We measured the influx rate constant (Ki) and effective distribution volume ratio (EDVR) of 18F-DOPA in the striatum relative to the cerebellum in WT, SNCAG51D/+ and SNCAG51D/G51D rats. A significant reduction in EDVR was observed in SNCAG51D/G51D rats at 16 months of age indicative of increased dopamine turnover. Furthermore, we observed a significant asymmetry in EDVR between the left and right striatum in aged SNCAG51D/G51D rats. The increased and asymmetric dopamine turnover observed in the striatum of aged SNCAG51D/G51D rats reflects one aspect of prodromal PD, and suggests the presence of compensatory mechanisms. SNCAG51D rats represent a novel genetic model of PD, and kinetic modelling of 18F-DOPA PET data has identified a highly relevant early disease phenotype.

4.
Elife ; 122023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37096321

RESUMEN

Caloric restriction (CR) reduces the risk of age-related diseases in numerous species, including humans. CR's metabolic effects, including decreased adiposity and improved insulin sensitivity, are important for its broader health benefits; however, the extent and basis of sex differences in CR's health benefits are unknown. We found that 30% CR in young (3-month-old) male mice decreased fat mass and improved glucose tolerance and insulin sensitivity, whereas these effects were blunted or absent in young females. Females' resistance to fat loss was associated with decreased lipolysis, energy expenditure and fatty acid oxidation, and increased postprandial lipogenesis, compared to males. The sex differences in glucose homeostasis were not associated with differential glucose uptake but with altered hepatic ceramide content and substrate metabolism: compared to CR males, CR females had lower TCA cycle activity and higher blood ketone concentrations, a marker of hepatic acetyl-CoA content. This suggests that males use hepatic acetyl-CoA for the TCA cycle whereas in females it accumulates, stimulating gluconeogenesis and limiting hypoglycaemia during CR. In aged mice (18-months old), when females are anoestrus, CR decreased fat mass and improved glucose homeostasis similarly in both sexes. Finally, in a cohort of overweight and obese humans, CR-induced fat loss was also sex- and age-dependent: younger females (<45 years) resisted fat loss compared to younger males while in older subjects (>45 years) this sex difference was absent. Collectively, these studies identify age-dependent sex differences in the metabolic effects of CR and highlight adipose tissue, the liver and oestrogen as key determinants of CR's metabolic benefits. These findings have important implications for understanding the interplay between diet and health, and for maximising the benefits of CR in humans.


Asunto(s)
Restricción Calórica , Resistencia a la Insulina , Humanos , Masculino , Femenino , Ratones , Animales , Anciano , Persona de Mediana Edad , Lactante , Pérdida de Peso , Acetilcoenzima A , Tejido Adiposo/metabolismo , Obesidad , Glucosa/metabolismo
5.
Radiology ; 305(1): 137-148, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35670715

RESUMEN

Background MRI and fluorine 18-labeled sodium fluoride (18F-NaF) PET can be used to identify features of plaque instability, rupture, and disease activity, but large studies have not been performed. Purpose To evaluate the association between 18F-NaF activity and culprit carotid plaque in acute neurovascular syndrome. Materials and Methods In this prospective observational cohort study (October 2017 to January 2020), participants underwent 18F-NaF PET/MRI. An experienced clinician determined the culprit carotid artery based on symptoms and record review. 18F-NaF uptake was quantified using standardized uptake values and tissue-to-background ratios. Statistical significance was assessed with the Welch, χ2, Wilcoxon, or Fisher test. Multivariable models were used to evaluate the relationship between the imaging markers and the culprit versus nonculprit vessel. Results A total of 110 participants were evaluated (mean age, 68 years ± 10 [SD]; 70 men and 40 women). Of the 110, 34 (32%) had prior cerebrovascular disease, and 26 (24%) presented with amaurosis fugax, 54 (49%) with transient ischemic attack, and 30 (27%) with stroke. Compared with nonculprit carotids, culprit carotids had greater stenoses (≥50% stenosis: 30% vs 15% [P = .02]; ≥70% stenosis: 25% vs 4.5% [P < .001]) and had increased prevalence of MRI-derived adverse plaque features, including intraplaque hemorrhage (42% vs 23%; P = .004), necrotic core (36% vs 18%; P = .004), thrombus (7.3% vs 0%; P = .01), ulceration (18% vs 3.6%; P = .001), and higher 18F-NaF uptake (maximum tissue-to-background ratio, 1.38 [IQR, 1.12-1.82] vs 1.26 [IQR, 0.99-1.66], respectively; P = .04). Higher 18F-NaF uptake was positively associated with necrosis, intraplaque hemorrhage, ulceration, and calcification and inversely associated with fibrosis (P = .04 to P < .001). In multivariable analysis, carotid stenosis at or over 70% (odds ratio, 5.72 [95% CI: 2.2, 18]) and MRI-derived adverse plaque characteristics (odds ratio, 2.16 [95% CI: 1.2, 3.9]) were both associated with the culprit versus nonculprit carotid vessel. Conclusion Fluorine 18-labeled sodium fluoride PET/MRI characteristics were associated with the culprit carotid vessel in study participants with acute neurovascular syndrome. Clinical trial registration no. NCT03215550 and NCT03215563 © RSNA, 2022 Online supplemental material is available for this article.


Asunto(s)
Placa Aterosclerótica , Anciano , Arterias Carótidas , Constricción Patológica , Femenino , Flúor , Radioisótopos de Flúor , Humanos , Imagen por Resonancia Magnética , Masculino , Placa Aterosclerótica/complicaciones , Placa Aterosclerótica/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Estudios Prospectivos , Fluoruro de Sodio
6.
Front Med (Lausanne) ; 8: 740615, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616758

RESUMEN

Bone is now regarded to be a key regulator of a number of metabolic processes, in addition to the regulation of mineral metabolism. However, our understanding of complex bone metabolic interactions at a systems level remains rudimentary. in vitro molecular biology and bioinformatics approaches have frequently been used to understand the mechanistic changes underlying disease at the cell level, however, these approaches lack the capability to interrogate dynamic multi-bone metabolic interactions in vivo. Here we present a novel and integrative approach to understand complex bone metabolic interactions in vivo using total-body positron emission tomography (PET) network analysis of murine 18F-FDG scans, as a biomarker of glucose metabolism in bones. In this report we show that different bones within the skeleton have a unique glucose metabolism and form a complex metabolic network, which could not be identified using single tissue simplistic PET standard uptake values analysis. The application of our approach could reveal new physiological and pathological tissue interactions beyond skeletal metabolism, due to PET radiotracers diversity and the advent of clinical total-body PET systems.

7.
Eur J Nucl Med Mol Imaging ; 49(1): 137-145, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34338808

RESUMEN

PURPOSE: To provide a comprehensive assessment of the novel 18 kDa translocator protein (TSPO) radiotracer, [18F]LW223, kinetics in the heart and brain when using a simplified imaging approach. METHODS: Naive adult rats and rats with surgically induced permanent coronary artery ligation received a bolus intravenous injection of [18F]LW223 followed by 120 min PET scanning with arterial blood sampling throughout. Kinetic modelling of PET data was applied to estimated rate constants, total volume of distribution (VT) and binding potential transfer corrected (BPTC) using arterial or image-derived input function (IDIF). Quantitative bias of simplified protocols using IDIF versus arterial input function (AIF) and stability of kinetic parameters for PET imaging data of different length (40-120 min) were estimated. RESULTS: PET outcome measures estimated using IDIF significantly correlated with those derived with invasive AIF, albeit with an inherent systematic bias. Truncation of the dynamic PET scan duration to less than 100 min reduced the stability of the kinetic modelling outputs. Quantification of [18F]LW223 uptake kinetics in the brain and heart required the use of different outcome measures, with BPTC more stable in the heart and VT more stable in the brain. CONCLUSION: Modelling of [18F]LW223 PET showed the use of simplified IDIF is acceptable in the rat and the minimum scan duration for quantification of TSPO expression in rats using kinetic modelling with this radiotracer is 100 min. Carefully assessing kinetic outcome measures when conducting a systems level as oppose to single-organ centric analyses is crucial. This should be taken into account when assessing the emerging role of the TSPO heart-brain axis in the field of PET imaging.


Asunto(s)
Tomografía de Emisión de Positrones , Radiofármacos , Algoritmos , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Ratas , Receptores de GABA-A/metabolismo
8.
Sci Rep ; 11(1): 5512, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750874

RESUMEN

18F-sodium fluoride (18F-NaF) is a positron emission tomography (PET) radiotracer widely used in skeletal imaging and has also been proposed as a biomarker of active calcification in atherosclerosis. Like most PET radiotracers, 18F-NaF is typically administered intravenously. However in small animal research intravenous administrations can be challenging, because partial paravenous injection is common due to the small calibre of the superficial tail veins and repeat administrations via tail veins can lead to tissue injury therefore limiting the total number of longitudinal scanning points. In this paper, the feasibility of using intra-peritoneal route of injection of 8F-NaF to study calcification in mice was studied by looking at the kinetic and uptake profiles of normal soft tissues and bones versus intra-vascular injections. Dynamic PET was performed for 60 min on nineteen isoflurane-anesthetized male Swiss mice after femoral artery (n = 7), femoral vein (n = 6) or intraperitoneal (n = 6) injection of 8F-NaF. PET data were reconstructed and the standardised uptake value (SUV) and standardised uptake value ratio (SUVr) were estimated from the last three frames between 45- and 60-min and 8F-NaF uptake constant (Ki) was derived by Patlak graphical analysis. In soft tissue, the 18F-NaF perfusion phase changes depending on the type on injection route, whereas the uptake phase is similar regardless of the administration route. In bone tissue SUV, SUVr and Ki measures were not significantly different between the three administration routes. Comparison between PET and CT measures showed that bones that had the highest CT density displayed the lowest PET activity and conversely, bones where CT units were low had high 8F-NaF uptake. Intraperitoneal injection is a valid and practical alternative to the intra-vascular injections in small-animal 18F-NaF PET imaging providing equivalent pharmacokinetic data. CT outcome measures report on sites of stablished calcification whereas PET measures sites of higher complexity and active calcification.

9.
J Nucl Med ; 62(4): 536-544, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32859708

RESUMEN

Myocardial infarction (MI) is one of the leading causes of death worldwide, and inflammation is central to tissue response and patient outcomes. The 18-kDa translocator protein (TSPO) has been used in PET as an inflammatory biomarker. The aims of this study were to screen novel, fluorinated, TSPO radiotracers for susceptibility to the rs6971 genetic polymorphism using in vitro competition binding assays in human brain and heart; assess whether the in vivo characteristics of our lead radiotracer, 18F-LW223, are suitable for clinical translation; and validate whether 18F-LW223 can detect macrophage-driven inflammation in a rat MI model. Methods: Fifty-one human brain and 29 human heart tissue samples were screened for the rs6971 polymorphism. Competition binding assays were conducted with 3H-PK11195 and the following ligands: PK11195, PBR28, and our novel compounds (AB5186 and LW223). Naïve rats and mice were used for in vivo PET kinetic studies, radiometabolite studies, and dosimetry experiments. Rats underwent permanent coronary artery ligation and were scanned using PET/CT with an invasive input function at 7 d after MI. For quantification of PET signal in the hypoperfused myocardium, K1 (rate constant for transfer from arterial plasma to tissues) was used as a surrogate marker of perfusion to correct the binding potential for impaired radiotracer transfer from plasma to tissue (BPTC). Results: LW223 binding to TSPO was not susceptible to the rs6971 genetic polymorphism in human brain and heart samples. In rodents, 18F-LW223 displayed a specific uptake consistent with TSPO expression, a slow metabolism in blood (69% of parent at 120 min), a high plasma free fraction of 38.5%, and a suitable dosimetry profile (effective dose of 20.5-24.5 µSv/MBq). 18F-LW223 BPTC was significantly higher in the MI cohort within the infarct territory of the anterior wall relative to the anterior wall of naïve animals (32.7 ± 5.0 vs. 10.0 ± 2.4 cm3/mL/min, P ≤ 0.001). Ex vivo immunofluorescent staining for TSPO and CD68 (macrophage marker) resulted in the same pattern seen with in vivo BPTC analysis. Conclusion:18F-LW223 is not susceptible to the rs6971 genetic polymorphism in in vitro assays, has favorable in vivo characteristics, and is able to accurately map macrophage-driven inflammation after MI.


Asunto(s)
Macrófagos/metabolismo , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/inmunología , Polimorfismo de Nucleótido Simple , Tomografía Computarizada por Tomografía de Emisión de Positrones , Receptores de GABA/metabolismo , Animales , Radioisótopos de Flúor/análisis , Inflamación/inmunología , Macrófagos/citología , Macrófagos/inmunología , Masculino , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Trazadores Radiactivos , Ratas Sprague-Dawley , Receptores de GABA/genética
11.
Sci Rep ; 10(1): 20172, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33214599

RESUMEN

Early microcalcification is a feature of coronary plaques with an increased propensity to rupture and to cause acute coronary syndromes. In this ex vivo imaging study of coronary artery specimens, the non-invasive imaging radiotracer, 18F-fluoride, was highly selective for hydroxyapatite deposition in atherosclerotic coronary plaque. Specifically, coronary 18F-fluoride uptake had a high signal to noise ratio compared with surrounding myocardium that makes it feasible to identify coronary mineralisation activity. Areas of 18F-fluoride uptake are associated with osteopontin, an inflammation-associated glycophosphoprotein that mediates tissue mineralisation, and Runt-related transcription factor 2, a nuclear protein involved in osteoblastic differentiation. These results suggest that 18F-fluoride is a non-invasive imaging biomarker of active coronary atherosclerotic mineralisation.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/metabolismo , Durapatita/metabolismo , Radioisótopos de Flúor/farmacocinética , Adulto , Anciano , Cadáver , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Enfermedad de la Arteria Coronaria/fisiopatología , Femenino , Radioisótopos de Flúor/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Técnicas de Cultivo de Órganos , Osteogénesis/fisiología , Osteopontina/metabolismo , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Espectrometría Raman , Microtomografía por Rayos X/métodos
12.
Nat Commun ; 11(1): 3097, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32555194

RESUMEN

Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass, yet unlike white or brown adipose tissues (WAT or BAT) its metabolic functions remain unclear. Herein, we address this critical gap in knowledge. Our transcriptomic analyses revealed that BMAT is distinct from WAT and BAT, with altered glucose metabolism and decreased insulin responsiveness. We therefore tested these functions in mice and humans using positron emission tomography-computed tomography (PET/CT) with 18F-fluorodeoxyglucose. This revealed that BMAT resists insulin- and cold-stimulated glucose uptake, while further in vivo studies showed that, compared to WAT, BMAT resists insulin-stimulated Akt phosphorylation. Thus, BMAT is functionally distinct from WAT and BAT. However, in humans basal glucose uptake in BMAT is greater than in axial bones or subcutaneous WAT and can be greater than that in skeletal muscle, underscoring the potential of BMAT to influence systemic glucose homeostasis. These PET/CT studies characterise BMAT function in vivo, establish new methods for BMAT analysis, and identify BMAT as a distinct, major adipose tissue subtype.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Médula Ósea/metabolismo , Glucosa/metabolismo , Animales , Western Blotting , Femenino , Homeostasis/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Tomografía de Emisión de Positrones , Ratas , Esqueleto/metabolismo
13.
Nat Commun ; 11(1): 721, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024848

RESUMEN

Myo-inositol hexakisphosphate (IP6) is a natural product known to inhibit vascular calcification (VC), but with limited potency and low plasma exposure following bolus administration. Here we report the design of a series of inositol phosphate analogs as crystallization inhibitors, among which 4,6-di-O-(methoxy-diethyleneglycol)-myo-inositol-1,2,3,5-tetrakis(phosphate), (OEG2)2-IP4, displays increased in vitro activity, as well as more favorable pharmacokinetic and safety profiles than IP6 after subcutaneous injection. (OEG2)2-IP4 potently stabilizes calciprotein particle (CPP) growth, consistently demonstrates low micromolar activity in different in vitro models of VC (i.e., human serum, primary cell cultures, and tissue explants), and largely abolishes the development of VC in rodent models, while not causing toxicity related to serum calcium chelation. The data suggest a mechanism of action independent of the etiology of VC, whereby (OEG2)2-IP4 disrupts the nucleation and growth of pathological calcification.


Asunto(s)
Fosfatos de Inositol/química , Fosfatos de Inositol/farmacología , Calcificación Vascular/tratamiento farmacológico , 6-Fitasa/metabolismo , Adenina/efectos adversos , Animales , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Dispersión Dinámica de Luz , Glicol de Etileno/química , Humanos , Inyecciones Subcutáneas , Fosfatos de Inositol/farmacocinética , Masculino , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Ratas Sprague-Dawley , Uremia/tratamiento farmacológico , Uremia/fisiopatología , Calcificación Vascular/inducido químicamente , Difracción de Rayos X
14.
Sci Rep ; 10(1): 2018, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029765

RESUMEN

Gadolinium chelates are widely used in cardiovascular magnetic resonance imaging (MRI) as passive intravascular and extracellular space markers. Manganese, a biologically active paramagnetic calcium analogue, provides novel intracellular myocardial tissue characterisation. We previously showed manganese-enhanced MRI (MEMRI) more accurately quantifies myocardial infarction than gadolinium delayed-enhancement MRI (DEMRI). Here, we evaluated the potential of MEMRI to assess myocardial viability compared to gold-standard 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) viability. Coronary artery ligation surgery was performed in male Sprague-Dawley rats (n = 13) followed by dual MEMRI and 18F-FDG PET imaging at 10-12 weeks. MEMRI was achieved with unchelated (EVP1001-1) or chelated (mangafodipir) manganese. T1 mapping MRI was followed by 18F-FDG micro-PET, with tissue taken for histological correlation. MEMRI and PET demonstrated good agreement with histology but native T1 underestimated infarct size. Quantification of viability by MEMRI, PET and MTC were similar, irrespective of manganese agent. MEMRI showed superior agreement with PET than native T1. MEMRI showed excellent agreement with PET and MTC viability. Myocardial MEMRI T1 correlated with 18F-FDG standard uptake values and influx constant but not native T1. Our findings indicate that MEMRI identifies and quantifies myocardial viability and has major potential for clinical application in myocardial disease and regenerative therapies.


Asunto(s)
Medios de Contraste/administración & dosificación , Corazón/diagnóstico por imagen , Manganeso/administración & dosificación , Infarto del Miocardio/diagnóstico por imagen , Miocardio/patología , Animales , Modelos Animales de Enfermedad , Femenino , Fluorodesoxiglucosa F18/administración & dosificación , Humanos , Imagen por Resonancia Magnética , Infarto del Miocardio/patología , Tomografía de Emisión de Positrones , Ratas , Supervivencia Tisular , Remodelación Ventricular/fisiología
15.
Eur Heart J Cardiovasc Imaging ; 21(6): 673-682, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31408105

RESUMEN

AIMS: Cardiovascular thrombosis is responsible a quarter of deaths annually worldwide. Current imaging methods for cardiovascular thrombosis focus on anatomical identification of thrombus but cannot determine thrombus age or activity. Molecular imaging techniques hold promise for identification and quantification of thrombosis in vivo. Our objective was to assess a novel optical and positron-emitting probe targeting Factor XIIIa (ENC2015) as biomarker of active thrombus formation. METHODS AND RESULTS: Optical and positron-emitting ENC2015 probes were assessed ex vivo using blood drawn from human volunteers and passed through perfusion chambers containing denuded porcine aorta as a model of arterial injury. Specificity of ENC2015 was established with co-infusion of a factor XIIIa inhibitor. In vivo18F-ENC2015 biodistribution, kinetics, radiometabolism, and thrombus binding were characterized in rats. Both Cy5 and fluorine-18 labelled ENC2015 rapidly and specifically bound to thrombi. Thrombus uptake was inhibited by a factor XIIIa inhibitor. 18F-ENC2015 remained unmetabolized over 8 h when incubated in ex vivo human blood. In vivo, 42% of parent radiotracer remained in blood 60 min post-administration. Biodistribution studies demonstrated rapid clearance from tissues with elimination via the urinary system. In vivo,18F-ENC2015 uptake was markedly increased in the thrombosed carotid artery compared to the contralateral patent artery (mean standard uptake value ratio of 2.40 vs. 0.74, P < 0.0001). CONCLUSION: ENC2015 rapidly and selectively binds to acute thrombus in both an ex vivo human translational model and an in vivo rodent model of arterial thrombosis. This probe holds promise for the non-invasive identification of thrombus formation in cardiovascular disease.


Asunto(s)
Factor XIIIa , Trombosis , Animales , Fibrina/metabolismo , Imagen Molecular , Ratas , Porcinos , Trombosis/diagnóstico por imagen , Distribución Tisular
16.
PLoS One ; 14(5): e0217515, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31150436

RESUMEN

INTRODUCTION: Positron Emission Tomography (PET) imaging with selective 18 kDa translocator protein (TSPO) radiotracers has contributed to our understanding on the role of inflammation in disease development and progression. With an increasing number of rodent models of human disease and expansion of the preclinical PET imaging base worldwide, accurate quantification of longitudinal rodent TSPO PET datasets is necessary. This is particularly relevant as TSPO PET quantification relies on invasive blood sampling due to lack of a suitable tissue reference region. Here we investigate the kinetics and quantification bias of a novel TSPO radiotracer [18F]AB5186 in rats using automatic, manual and image derived input functions. METHODS: [18F]AB5186 was administered intravenously and dynamic PET imaging was acquired over 2 hours. Arterial blood was collected manually to derive a population based input function or using an automatic blood sampler to derive a plasma input function. Manually sampled blood was also used to analyze the [18F]AB5186 radiometabolite profile in plasma and applied to all groups as a population based dataset. Kinetic models were used to estimate distribution volumes (VT) and [18F]AB5186 outcome measure bias was determined. RESULTS: [18F]AB5186 distribution in rats was consistent with TSPO expression and at 2 h post-injection 50% of parent compound was still present in plasma. Population based manual sampling methods and image derived input function (IDIF) underestimated VT by ~50% and 88% compared with automatic blood sampling, respectively. The VT variability was lower when using IDIF versus arterial blood sampling methods and analysis of the Bland-Altman plots showed a good agreement between methods of analysis. CONCLUSION: Quantification of TSPO PET rodent data using image-derived methods, which are more amenable for longitudinal scanning of small animals, yields outcome measures with reduced variability and good agreement, albeit biased, compared with invasive blood sampling methods.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Animales , Radioisótopos de Flúor , Procesamiento de Imagen Asistido por Computador , Masculino , Modelos Animales , Radiofármacos/administración & dosificación , Ratas , Receptores de GABA-A
17.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1118-1119: 33-39, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31005772

RESUMEN

In Positron Emission Tomography (PET) research, it is important to assess not only pharmacokinetics of a radiotracer in vivo, but also of the drugs used in blocking/displacement PET studies. Typically, pharmacokinetic/pharmacodynamic (PK/PD) analyses of drugs used in rodent PET studies are based on population average pharmacokinetic profiles of the drugs due to limited blood volume withdrawal while simultaneously maintaining physiological homeostasis. This likely results in bias of PET data quantification, including unknown bias of target occupancy (TO) measurements. This study aimed to develop a High Performance Liquid Chromatography (HPLC) method for PK/PD quantification of drugs used in preclinical rodent PET research, specifically the translocator 18 kDa protein (TSPO) selective drug, PK11195, that used sub-millilitre blood volumes. The lowest detection limit for the proposed HPLC method ranged between 7.5 and 10 ng/mL depending on the method used to calculate the limit of detection, and the measured average relative standard deviation for intermediate precision was equal to 17.2%. Most importantly, we were able to demonstrate a significant difference between calculated PK11195 concentrations at 0.5, 1, 2, 3, 5, 15 and 30 min post-administration and individually measured whole blood levels (significance level range from p < 0.05 to p < 0.001; one-way ANOVA, Dunnet's post hoc test, p < 0.05). The HPLC method developed here uses sub-millilitre sample volumes to reproducibly assess PK/PD of PK11195 in rodent blood. This study highlights the importance of individually measured PK/PD drug concentrations when quantifying the TO from blocking/displacement rodent PET experiments.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Isoquinolinas/análisis , Isoquinolinas/farmacocinética , Administración Intravenosa , Animales , Isoquinolinas/administración & dosificación , Límite de Detección , Modelos Lineales , Masculino , Tomografía de Emisión de Positrones , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Distribución Tisular
18.
Sci Rep ; 9(1): 3250, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824750

RESUMEN

The hypothalamic-pituitary-adrenal (HPA) axis regulates responses to internal and external stressors. Many patients diagnosed with conditions such as depression or anxiety also have hyperactivity of the HPA axis. Hyper-stimulation of the HPA axis results in sustained elevated levels of glucocorticoids which impair neuronal function and can ultimately result in a psychiatric disorder. Studies investigating Glucocorticoid Receptor (GR/NR3C1) in the brain have primarily focused on the forebrain, however in recent years, the hindbrain has become a region of interest for research into the development of anxiety and depression, though the role of GR signalling in the hindbrain remains poorly characterised. To determine the role of glucocorticoid signalling in the hindbrain we have developed a novel mouse model that specifically ablates hindbrain GR to ascertain its role in behaviour, HPA-axis regulation and adrenal structure. Our study highlights that ablation of GR in the hindbrain results in excessive barbering, obsessive compulsive digging and lack of cage exploration. These mice also develop kyphosis, elevated circulating corticosterone and severe adrenal cortex disruption. Together, this data demonstrates a role for hindbrain GR signalling in regulating stress-related behaviour and identifies a novel mouse model to allow further investigation into the pathways impacting stress and anxiety.


Asunto(s)
Receptores de Glucocorticoides/metabolismo , Rombencéfalo/metabolismo , Estrés Psicológico/metabolismo , Corteza Suprarrenal/patología , Animales , Conducta Animal , Peso Corporal , Modelos Animales de Enfermedad , Femenino , Cifosis/complicaciones , Cifosis/diagnóstico por imagen , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Tomografía de Emisión de Positrones , Recombinación Genética/genética , Rombencéfalo/diagnóstico por imagen , Estrés Psicológico/diagnóstico por imagen , Tomografía Computarizada por Rayos X
19.
Circ Cardiovasc Imaging ; 12(1): e007835, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30642216

RESUMEN

BACKGROUND: Microcalcifications in atherosclerotic plaques are destabilizing, predict adverse cardiovascular events, and are associated with increased morbidity and mortality.18F-fluoride positron emission tomography (PET)/computed tomography (CT) imaging has demonstrated promise as a useful clinical diagnostic tool in identifying high-risk plaques; however, there is confusion as to the underlying mechanism of signal amplification seen in PET-positive, CT-negative image regions. This study tested the hypothesis that 18F-fluoride PET/CT can identify early microcalcifications. METHODS: 18F-fluoride signal amplification derived from microcalcifications was validated against near-infrared fluorescence molecular imaging and histology using an in vitro 3-dimensional hydrogel collagen platform, ex vivo human specimens, and a mouse model of atherosclerosis. RESULTS: Microcalcification size correlated inversely with collagen concentration. The 18F-fluoride ligand bound to microcalcifications formed by calcifying vascular smooth muscle cell derived extracellular vesicles in the in vitro 3-dimensional collagen system and exhibited an increasing signal with an increase in collagen concentration (0.25 mg/mL collagen -33.8×102±12.4×102 counts per minute; 0.5 mg/mL collagen -67.7×102±37.4×102 counts per minute; P=0.0014), suggesting amplification of the PET signal by smaller microcalcifications. We further incubated human atherosclerotic endarterectomy specimens with clinically relevant concentrations of 18F-fluoride. The 18F-fluoride ligand labeled microcalcifications in PET-positive, CT-negative regions of explanted human specimens as evidenced by 18F-fluoride PET/CT imaging, near-infrared fluorescence, and histological analysis. Additionally, the 18F-fluoride ligand identified micro and macrocalcifications in atherosclerotic aortas obtained from low-density lipoprotein receptor-deficient mice. CONCLUSIONS: Our results suggest that 18F-fluoride PET signal in PET-positive, CT-negative regions of human atherosclerotic plaques is the result of developing microcalcifications, and high surface area in regions of small microcalcifications may amplify PET signal.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Radioisótopos de Flúor/administración & dosificación , Placa Aterosclerótica , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/administración & dosificación , Calcificación Vascular/diagnóstico por imagen , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Enfermedades de las Arterias Carótidas/patología , Células Cultivadas , Enfermedad de la Arteria Coronaria/patología , Modelos Animales de Enfermedad , Humanos , Ratones Noqueados , Imagen Molecular/métodos , Valor Predictivo de las Pruebas , Receptores de LDL/deficiencia , Receptores de LDL/genética , Rotura Espontánea , Calcificación Vascular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...